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Abstract— In this paper, we seek to build connections between
control Lyapunov functions (CLFs) and Hamilton-Jacobi (HJ)
reachability analysis. CLFs have been used extensively in
the control community for synthesizing stabilizing feedback
controllers. However, there is no systematic way to construct
CLFs for general nonlinear systems and the problem can
become more complex with input constraints. HJ reachability is
a formal method that can be used to guarantee safety or reacha-
bility for general nonlinear systems with input constraints. The
main drawback is the well-known “curse of dimensionality.”
In this paper we modify HJ reachability to construct what we
call a control Lyapunov-Value Function (CLVF) which can be
used to find and stabilize to the smallest control invariant set
(Im) around a point of interest. We prove that the CLVF is
the viscosity solution to a modified HJ variational inequality
(VI), and can be computed numerically, during which the input
constraints and exponential decay rate γ are incorporated. This
process identifies the region of exponential stability to Im given
the desired input bounds and γ. Finally, a feasibility-guaranteed
quadratic program (QP) is proposed for online implementation.

I. INTRODUCTION
Autonomous systems performing tasks in the real world

should be both live (able to complete tasks) and safe.
Control Lyapunov functions (CLFs) are a popular method to
ensure liveness by stabilizing trajectories of a system to an
equilibrium point [1]–[3]. Control barrier functions (CBFs)
on the other hand are used to guarantee safety by maintaining
trajectories of a system within a safe control invariant set
[4]–[6]. Unfortunately, finding CLFs and CBFs is difficult:
there lacks universal construction methods that work for
general nonlinear systems. Hand-designed or application-
specific CLFs and CBFs can be used [7]–[11]. However,
these hand-crafted functions can be conservative in many
cases, and may be invalid when faced with input bounds.

Liveness and safety can also be achieved by formal
methods such as Hamilton-Jacobi (HJ) reachability analysis
[12]–[16]. This method computes a value function whose
level sets provide information about safety (liveness) over
space and time, and whose gradients provide the safety
(liveness) controller. This value function can be computed
numerically using dynamic programming, handles general
nonlinear systems, and can accommodate input and distur-
bance bounds. Undermining the appealing benefits is the
“curse of dimensionality.” Ongoing research has improved
computational efficiency [17]–[19], but performing dynamic
programming in high dimensions (6D or more) remains
challenging. Additionally, standard HJ analysis does not
provide the ability for a system to stabilize to a goal.
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Fig. 1. An illustrative example of the CLVF approach. First row: given
a system (39) with control bounds, for different desired exponentially
stabilizing rates γ, the computed CLVFs and corresponding regions of
exponential stabilizability (ROES) Dγ ’s are shown. It can be seen that the
CLVFs are not smooth and not in quadratic form. When γ = 0, the ROES
of CLVF is its largest control invariant set, and when γ > 0, the ROES
contains all the states that can be stabilized to the origin with exponential
rate γ. A larger γ results in smaller Dγ . Second row: (left) trajectories using
the CLVF-QP controller starting from the same initial condition, (right) the
decay of the value along these trajectories. A non-zero γ forces the value to
decay; larger γ results in a faster decrease. In this example, the dynamics
itself is attractive, and drives the trajectory of γ = 0 to the origin.

Recent work has shown that CBF-like functions can be
constructed by modifying HJ reachability analysis [20]. In
this paper we seek to extend this work to constructing con-
trol Lyapunov-value functions (CLVFs), which have similar
stabilizing properties to CLFs. This extension is nontrivial:
HJ reachability applied to liveness traditionally seeks to find
the minimum time to reach a goal (and may be forced to
exit after reaching it), whereas a CLVF seeks to stabilize
to a goal. Additionally, there are many systems for which a
valid CLF does not exist due to no stabilizable equilibrium
points. For such systems, our method can find and stabilize
to the smallest control invariant set around a point of interest.

In this paper, the main contributions are:

1) We define the CLVF and establish the theoretical foun-
dation of how to compute this function.

2) We establish the relation between CLVFs and the expo-
nential stabilizability of nonlinear systems. We provide
a numerical estimation of the region of exponential sta-
bilizability (ROES), and demonstrate the effect of the
exponential rate parameter γ on the ROES.

3) For systems that have no stabilizable equilibrium points,
we show that the CLVF stabilizes the system to its
smallest control invariant set around a point of interest
(if one exists).

4) We provide a QP-based controller, and show that both
feasibility and the exponential decay rate are guaranteed.
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II. BACKGROUND
A. Problem Formulation

Consider the general nonlinear time-invariant system
ẋ(s) = f (x(s), u(s)) , s ∈ [t, tf ], x(t) = x, (1)

where t < 0 is the initial time, tf ≥ t, and x ∈ Rn is the
initial state. The control input u is drawn from a compact set
∈ U ⊂ Rm, and the control function u(·) is assumed to be
drawn from the set of measurable functions U. Assuming that
the dynamics f : Rn × U → Rn is Lipschitz continuous in
(x, u) and continuous in the s, there exists a unique solution
φ(s) = φ(s;x, t, u(·)) : [t, tf ]→ Rn of the system (1) given
initial state x and control signal u(·). In this paper, we seek
to exponentially stabilize the system to its smallest control
invariant set.

Definition 1. A set I(t) is finite-time control invariant if
∀x ∈ I, there exists some control u(·) such that ∀s ∈ [t, 0],
φ(s;x, u, t) ∈ I. A set I∞ is infinite-time control invariant
if the above condition holds as t→ −∞.

Definition 2. The ROES of I∞m is defined as

DROES := {x ∈ Rn|∃u ∈ U, γ > 0 s.t. ||φ(s;x, u, t)|| → I∞
m

with exponential rate γ as t→ −∞}.

For systems with an stabilizable equilibrium point, the
equilibrium point itself is the smallest control invariant set. In
this case, without loss of generality, we assume it is (x, u) =
(0, 0). For systems that have no equilibrium point, but do
have some control invariant sets, without loss of generality,
we assume this set is around the origin. For simplicity, in
both cases, this set is denoted as I∞m . Throughout the paper,
φ(·) and u(·) denotes the trajectory function and control
function. φ(s) refers to the function value at time s.

B. Optimal Control and HJ Reachability

In this paper we introduce the safety (rather than liveness)
formulation of Hamilton-Jacobi (HJ) reachability. This is
because in this paper we construct the liveness problem of
stabilizing to the smallest control invariant set I∞m as a safety
problem, wherein the system seeks to avoid all regions of the
state space that are not I∞m .

To compute the value function for HJ reachability we
define a Lipschitz continuous cost function ℓ : Rn → R
whose super-zero level set is the failure set F = {x : ℓ(x) ≥
0}. The finite-time horizon cost function captures whether a
given trajectory enters F at any point in the time horizon
(conventionally [t, 0]):

J(t, x, u) = sup
s∈[t,0]

ℓ(φ(s;x, u, t)). (2)

The value function is this cost given optimal control:
V (x, t) = inf

u∈U[t,0]

J(t, x, u) = inf
u∈U[t,0]

sup
s∈[t,0]

ℓ(φ(s)). (3)

This value function is the unique Lipschitz continuous
viscosity solution to the following Hamilton-Jacobi-Isaacs
variational inequality (HJI-VI) [21]:

min

{
ℓ(x)− V (x, t),

DtV (x, t) + inf
u∈U[t,0]

DxV (x, t) · f(x, u)
}
= 0.

(4)

Therefore the value function can be computed using dy-
namic programming by applying this HJI-VI recursively over
time. The infinite-time horizon value function is defined by
taking the limit of V (x, t) as t→ −∞ [22],

V∞(x) = lim
t→−∞

V (x, t). (5)

For the time-varying value function, trajectories that start
in the super-zero level set V (x, t) ≥ 0 will enter F for
some time s ∈ [t, 0]. The sub-zero level set of V (x, t) is
therefore safe for the time horizon. This can be extended to
say that each sub-α level set Vα = {x : V (x, t) ≤ α} is safe
with respect to the set defined by Fα = {x : ℓ(x) ≤ α}.
In the infinite-time setting, this means every sub-α level set
of V∞(x) is control invariant and can maintain trajectories
within a particular level set boundary. However, since the
set is only control invariant, there is no guarantee that the
system can be stabilized to lower level sets or the origin.
C. Control Lyapunov Functions

CLFs are a common tool for ensuring and enforcing the
stability of a system. A continuous function Vclf : Rn → R is
a local CLF for the equilibrium point x if, in a neighborhood
O of x, the following holds: (a) Vclf is proper at x, (b) Vclf
is positive definite on O and continuously differentiable on
O, and (c) for each x ∈ O, there exists some u ∈ U such
that V̇clf(x) =

dVclf
dx · f(x, u) < 0.

The existence of a CLF implies the system is asymptoti-
cally stabilizable, and the gradient of the CLF can be used
to generate a stabilizing controller. If in addition V̇ ≤ γV
for some γ > 0, exponential stabilizability is guaranteed.

For a local CLF, each sub-level set contained in O is
not only control invariant, but also attractive. Informally
speaking, control invariance only guarantees not leaving the
control invariant set, whereas attractive guarantees shrinking
to a smaller set. This appealing property differs from the
sub-level set of the infinite-time value function defined in
HJ reachability analysis (5). In this paper we seek to modify
(5) to obtain this property.

Note that many nonlinear systems fail to have a contin-
uously differentiable CLF, though there has been work to
generalize CLFs to only be continuous based on generalized
gradients [23], [24].
D. Control Barrier-Value Functions

Control barrier functions are similar to CLFs but generated
for safety problems [4]. Recent work [20] introduced a
method of modifying HJ reachability value functions to have
similar properties to CBFs. The resulting control barrier
value function (CBVF) is the unique Lipschitz continuous
viscosity solution to a specific variational inequality called
CBVF-VI, and has the property Ḃγ ≥ −γBγ . The CBVF
gives the largest control invariant set, and the optimal control
is less conservative compared to classic HJ reachability [20].

We emphasize some key differences between the CBVF
and our proposed CLVF: 1) The CBVF focuses on staying
within the safe set in finite time, while we focus on stabiliz-
ing to the goal over an infinite-time horizon. 2) The CBVF is
defined on Rn, as is our time-varying CLVF (TV-CLVF), but
the infinite-time CLVF is not guaranteed to be defined on Rn.



3) We prove the CLVF is the Lipschitz continuous viscosity
solution to the CLVF-VI, whereas the CBVF is only proved
for time-varying case. 4) We propose the CLVF-QP which is
guaranteed to be feasible for all time, while the CBVF-QP
can only guarantee feasibility for a finite-time.

III. CONTROL LYAPUNOV-VALUE FUNCTIONS

In this section we introduce the CLVF and its properties.
A. Definition of CLVFs
Definition 3. Time-Varying Control Lyapunov-Value
Function (TV-CLVF) A TV-CLVF Vγ(x, t) : Rn × R− →
R+, is defined as

Vγ(x, t) = inf
u∈U[t,0]

sup
s∈[t,0]

eγ(s−t)ℓ(φ(s;x, t, u)), (6)

where Jγ(t, x, u) = sups∈[t,0] e
γ(s−t)ℓ(φ(s;x, t, u)) is the

finite-time cost, γ is a user specified parameter which rep-
resents the desired decay rate, ℓ(x) = ||x||2 − a, and a is
a constant determined by Algorithm 1. The control seeks to
decrease the system along ℓ(x) towards the origin. Note that
the specification of ℓ(x) does not restrict the TV-CLVF to
be in quadratic form.

The standard HJ reachability value function (3) is a special
case of (6) where γ = 0. We will show how the inclusion
of this exponential term provides the region for which the
system can be stabilized at a rate of γ.

Note that since ∀s ∈ [t, 0] and γ ≤ 0, eγ(s−t) ≥ 1, we
have Vγ(x, t) ≥ V0(x, t). Therefore each level set of Vγ(x, t)
is a subset of the level set of V0(x, t).

We extend the definition of the TV-CLVF to infinite time:
Definition 4. CLVF Given a compact set Dγ , the function
V∞
γ : Dγ ⊂ Rn → R+ is a CLVF if the following limit

exists:
V∞
γ (x) = lim

t→−∞
Vγ(x, t). (7)

The existence of the limit in (7) implies that the CLVF
is unique given a specific system and input bounds. The
Lipschitz continuity of the CLVF is proved in Theorem 2.
Remark 1. Note that the existence of the limit to negative
infinity in (7) is equivalent to limn→∞ Vγ(x, tn) = V∞

γ (x)
for every sequence {tn} s.t. tn ̸= −∞ and limn→∞ tn =
−∞. In other words, if we evaluate Vγ(x, t) at each tn,
and get a sequence of functions {Un} such that Un(x) =
V∞
γ (x, tn), then {Un} converges to V∞

γ pointwise in Dγ .
If in addition, the sequence {tn} is monotonically decreas-

ing, by Dini’s Theorem, the convergence of {Un} to V∞
γ is

uniform in Dγ .
B. Dynamic Programming Principle & Viscosity Solution

We next establish the theoretical foundation for computing
the CLVF in two steps. First, we show that Bellman’s
optimality principle can be used to derive the dynamic
programming principle for the CLVF. Second, we show that
the CLVF is the viscosity solution to the CLVF-VI.
Theorem 1. (CLVF Dynamic Programming Principle) For
all t1 > 0, the following is satisfied

V∞
γ (x) = inf

u∈U
max

{
max

s∈[0,t1]
eγt1ℓ(φ(s;x, 0, u)), eγt1V∞

γ (z)

}
. (8)

We first show that the CLVF can be expressed in an
equivalent form.

Proposition 1. An equivalent TV-CLVF Vγ,f : Rn ×
[0,∞)→ R is defined as

Vγ,f (x, t) = inf
u∈U[0,t]

Jγ,f (t, x, u), (9)

with cost Jγ,f (t, x, u) = sups∈[0,t] e
γsℓ(φ(s;x, 0, u)). The

forward infinite-time cost and the CLVF is defined as
J∞
γ,f (x, u) = lim

t→∞
Jγ,f (t, x, u)

V∞
γ,f (x) = lim

t→∞
Vγ,f (x, t). (10)

We have

V∞
γ,f (x) = V∞

γ (x). (11)

Proof. We first show that ∀t ≥ 0, Jγ,f (t, x, u(·)) =
Jγ(−t, x, ū(·)), if u(τ−t) = ū(τ). Since the system is time-
invariant, we have

φ1(s;x, 0, u(τ)) = φ2(s− t;x,−t, u(τ − t)),

ℓ
(
φ1(s;x, 0, u(τ))

)
= ℓ

(
φ2(s− t;x,−t, u(τ − t))

)
.

We multiply by an exponential term and take the supremum:
sup

s∈[0,t]
eγsℓ

(
φ1(s;x, 0, u(τ))

)
= sup

s∈[0,t]
eγsℓ

(
φ2(s− t;x,−t, u(τ − t))

)
. (12)

The L.H.S. of (12) is
sup

s∈[0,t]
eγsℓ

(
φ1(s;x, 0, u(·))

)
= Jγ,f (t, x, u(·)).

Let s1 = s− t, the R.H.S. of (12) becomes
sup

s1∈[−t,0]
eγ(s1+t)ℓ

(
φ2(s1;x,−t, u(τ − t))

)
= Jγ(−t, x, ū(·)),

where u(τ − t) = ū(τ). This means ∀u(·) ∈ U[0,t], ∃ū(·) ∈
U[−t,0], such that Jγ,f (t, x, u(·)) = Jγ(−t, x, ū(·)).

Assume u∗(·) ∈ U[0,t] is the optimal control signal for
Vγ,f (x, t), then ū∗(τ) = u∗(τ − t) is the optimal control
signal for Vγ(x,−t), i.e.

Vγ,f (x, t) = Vγ(x,−t). (13)

This can be proved by contradiction. Assume u∗(·) ∈ U[0,t]

is the optimal control signal for Vγ,f (x, t), and ū∗(τ) =
u∗(τ − t) is not the optimal control signal for Vγ(x,−t).
This means there exist another control signal ū2(·), s.t.

Jγ(−t, x, ū2(·)) < Jγ(−t, x, ū∗(·)),

then, there exists a control signal u2(τ − t) = ū2(τ) s.t.
Jγ,f (t, x, u2(·)) = Jγ(−t, x, ū2(·))

< Jγ(−t, x, ū∗(·))
= Jγ,f (t, x, u

∗(·)) = Vγ,f (x, t),

which is a contradiction to the assumption that u∗(·) is the
optimal control signal. Since (13) holds for all t ≥ 0, we
can take limit t→∞:

V∞
γ,f (x) = lim

t→∞
Vγ,f (x, t)

= lim
t→∞

Vγ(x,−t) = V∞
γ (x).

Proof of Theorem 1. Now, we use V∞
γ,f to derive the dy-

namic program principle. Let W (x) denote the R.H.S. of
equation (8), we first show that V∞

γ,f (x) ≤W (x).
For ∀u(·) ∈ U, t > 0, let z = φ(t;x, 0, u(τ)), ∀ε0 > 0,

∃ū ∈ U such that
V∞
γ,f (z) ≥ J∞

γ,f (z, ū)− ε0. (14)

Define the control input û(·) as,



û(s) :=

{
u(s) if 0 ≤ s < t,

ū(s− t) if s ≥ t.

From the definition of CLVF, we have
V∞
γ,f (x) ≤ J∞

γ,f (x, û) = sup
s∈[0,+∞)

eγsℓ(φ(s;x, û(τ))). (15)

The cost J∞
γ,f (x, û) can be written as

J∞
γ,f (x, û) = max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, û(τ))

)
,

sup
s∈[t,+∞)

eγsℓ
(
φ(s; z, t, û(τ))

)}
,

which is equivalent to

J∞
γ,f (x, û) = max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, û(τ))

)
,

eγt sup
s∈[0,+∞)

eγsℓ
(
φ(s; z, 0, ū(τ))

)}
.

(16)

By the definition of J∞
γ,f (z, ū), combining (15) and (16),

for ∀u ∈ Ut,
V∞
γ,f (x) ≤ max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, u(τ))

)
, eγtJ∞

γ,f (z, ū)

}
. (17)

From (14) and (17),

V∞
γ,f (x) ≤ max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, u(τ))

)
, eγt(V (z) + ε0)

}
≤ max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, u(τ))

)
, eγtV∞

γ,f (z)

}
+ eγtε0.

By taking ε0 = e−γtε, we get
V∞
γ,f (x) ≤W (x) + ε, ∀ε > 0. (18)

Since ε and control u are arbitrary, V∞
γ,f (x) ≤W (x).

For the opposite inequality, by the definition of W (x), for
∀u ∈ U, it holds that

W (x) ≤ max

{
sup

s∈[0,t]
eγsℓ

(
φ(s; , x, 0, u(τ))

)
, eγtV∞

γ,f (z)

}
, (19)

here z = φ(t;x, 0, u(τ)). Take u1(τ + t) := u(τ), by the
definition of V∞

γ,f (z), we have

V∞
γ,f (z) ≤ sup

s∈[0,+∞)
eγsℓ

(
φ(s; z, 0, u1(τ + t))

)
. (20)

From (19) and (20),

W (x) ≤ max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, u(τ))

)
,

eγt sup
s∈[0,+∞)

eγsℓ(φ(s; z, 0, u1(τ + t)))

}
= max

{
sup

s∈[0,t]
eγsℓ

(
φ(s;x, 0, u(τ))

)
,

sup
s∈[t,+∞)

eγsℓ
(
φ(s; z, t, u(τ))

)}
= J∞

γ,f (x, u).

Since u is the arbitrary control, taking the infimum of
J∞
γ,f (x, u) over U, it still holds that

W (x) ≤ V∞
γ,f (x). (21)

From (18), (21), and (11) we have W (x) = V∞
γ,f (x) =

V∞
γ (x), so the equality (8) holds.

Theorem 2. (CLVF-VI viscosity solution) The CLVF is the
unique Lipschitz solution to the following CLVF-VI in the
viscosity sense,

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

DxV
∞
γ · f(x, u) + γV∞

γ (x)

}
= 0. (22)

Proof. Following from [13]–[15], analogously a continuous
function V∞

γ is the viscosity solution to the CLVF-VI if the
following statements hold,

(i) V∞
γ is a viscosity subsolution of CLVF-VI if for ∀x ∈

Rn, ∀p ∈ D+V∞
γ (x),

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

p+ · f(x, u) + γV∞
γ (x)

}
≥ 0.

(ii) V∞
γ is a viscosity supersolution of CLVF-VI if for ∀x ∈

Rn, ∀p ∈ D−V∞
γ (x),

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

p− · f(x, u) + γV∞
γ (x)

}
≤ 0.

An equivalent definition could be stated in terms of test
functions,
(iii) statement (i) holds if and only if, for any ψ ∈ C1(Rn),

if x is a local maximum for V∞
γ − ψ, then

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

Dxψ(x) · f(x, u) + γV∞
γ (x)

}
≥ 0.

(iv) statement (ii) holds if and only if, for any ψ ∈ C1(Rn),
if x is a local minimum for V∞

γ − ψ, then

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

Dxψ(x) · f(x, u) + γV∞
γ (x)

}
≤ 0.

We first prove that V∞
γ (x) is a viscosity subsolution. Let

ψ ∈ C1(Rn) and x be a local maximum of V∞
γ − ψ. Then

for some r > 0, it holds that
V∞
γ (x)− ψ(x) ≥ V∞

γ (z)− ψ(z), (23)

for ∀z ∈ B(x, r). Suppose there exists sufficiently small t0
such that for any arbitrary control input u ∈ U,

φ(t;x, 0, u) ∈ B(x, r), ∀t ∈ [0, t0].

By the DPP (8), V (x) could be taken from two cases, so
we first assume that

V∞
γ (x) = V∞

γ,f (x) = inf
u∈U

eγt · V∞
γ,f (φ(t;x, 0, u)),

then there exists u∗ ∈ U such that
V∞
γ (x) = eγt · V∞

γ,f (φ(t;x, 0, u
∗)).

Combining the equation above with (23), and let z =
φ(t;x, 0, u), it holds that

ψ(x)− ψ(φ(t;x, 0, u))

≤ eγtV∞
γ,f (φ(t;x, 0, u

∗))− V∞
γ,f (φ(t;x, 0, u))

≤ (eγt − 1)V∞
γ,f (φ(t;x, 0, u)).

(24)

Divide by t > 0 on the L.H.S. and the last inequality of
(24), and let t → 0. By the differentiability of ψ and the
continuity of f and φ, the L.H.S. becomes

lim
t→0

ψ(x)− ψ(φ(t;x, 0, u))

t
= −Dxψ(x) · f(x, u).

Similarly, by the continuity of φ, the last inequality of (24)
becomes,

lim
t→0

V∞
γ,f (φ(t;x, 0, u))

eγt − 1

t
= γV∞

γ,f (x) = γV∞
γ (x).

Therefore, (24) becomes,
Dxψ(x) · f(x, u) + γV∞

γ (x) ≥ 0.

Since the control u is arbitrary, we have
inf
u∈U

Dxψ(x) · f(x, u) + γV∞
γ (x) ≥ 0. (25)

For the other case, we assume that,
V∞
γ (x) = V∞

γ,f (x) = inf
u∈U

sup
s∈[0,t]

eγsℓ(φ(s;x, 0, u)),

and there exists u∗ such that



V∞
γ (x) = sup

s∈[0,t]
eγsℓ(φ(s;x, 0, u∗)). (26)

From (23) and (26),
ψ(x)− ψ(φ(t;x, 0, u))

≤ sup
s∈[0,t]

eγsℓ(φ(s;x, 0, u∗))− V∞
γ (φ(s;x, 0, u))

≤ sup
s∈[0,t]

eγsℓ(φ(s;x, 0, u))− V∞
γ (φ(s;x, 0, u)).

Since the equation above holds for ∀t ∈ [0, t0], take t→ 0
and by the continuity of ψ, ℓ and φ, it holds that

0 ≤ ℓ(x)− V∞
γ (x). (27)

Combining (25) and (27), it holds that

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

Dxψ(x) · f(x, u) + γV (x)

}
≥ 0. (28)

Thus, V∞
γ (x) is a viscosity subsolution of CLVF-VI.

Next we prove that V∞
γ (x) is also a viscosity superso-

lution of CLVF-VI. Assume that x is local minimum of
V∞
γ − ψ, then for some r > 0,

V∞
γ (x)− ψ(x) ≤ V∞

γ (z)− ψ(z), ∀z ∈ B(x, r). (29)

Suppose for a sufficiently small t, we first assume that,
V∞
γ (x) = V∞

γ,f (x) = inf
u∈U

eγtV∞
γ,f (φ(t;x, 0, u)).

Then for an arbitrary ε > 0, ∃ū ∈ U s.t.
V∞
γ (x) ≥ eγtV∞

γ (φ(t;x, 0, ū))− tε. (30)

Let z = φ(t;x, 0, ū), from (29) and (30),
ψ(x)− ψ(φ(t;x, 0, ū)) ≥ (eγt − 1)V∞

γ (ψ(t;x, 0, ū))− tε.

For the above equation, divide by t > 0 and pass the limit
to 0, we see −Dxψ · f(x, ū) ≥ γV∞

γ (x)− ε. The term from
the L.H.S. could be estimated from above.

Equivalently, infu∈UDxψ · f(x, u) + γV∞
γ (x) ≤ ε. Since

ε > 0 is arbitrary,
inf
u∈U

Dxψ · f(x, u) + γV∞
γ (x) ≤ 0. (31)

Next, suppose that
V∞
γ (x) = V∞

γ,f (x) = inf
u∈U

sup
s∈[0,t]

eγsℓ(φ(s;x, 0, u)).

Then for ∀ε > 0, ∃ū ∈ U s.t.
V∞
γ (x) ≥ sup

s∈[0,t]
eγsℓ(φ(s;x, 0, ū))− ε. (32)

Let z = φ(s;x, 0, ū), combine (29) and (32),
ψ(x)− ψ(φ(s;x, 0, ū))

≥ sup
s∈[0,t]

eγsℓ(φ(s;x, 0, ū))− V∞
γ (φ(s;x, 0, ū))− ε

Let t→ 0, then s→ 0, by the continuity of φ, ψ and ℓ, it
follows that ℓ(x)− V∞

γ (x) ≤ ε. Since ε is arbitrary,
ℓ(x)− V∞

γ (x) ≤ 0 (33)

From (31) and (33), we conclude that V∞
γ (x) is a viscosity

supersolution of CLVF-VI.
The Lipschitz continuity can be proved following the same

process as in [12, Thrm 3.2]. Combined, we proved V∞
γ (x)

is the Lipschitz continuous viscosity solution to (22).

Note the differences between (22) and (4) are: first, (22)
is time-invariant and second, the γV∞

γ (x) in (22).

C. Algorithm for Computing CLVF
Here we present an Algorithm to compute the CLVF.

Specifically, we emphasize how the constant a in ℓ(x) is
determined. Remark 2 and Proposition 2 are vital.
Remark 2. In classic HJ reachability, an interesting obser-
vation is that

V (x, t) + c = inf
u∈U[t,0]

sup
s∈[t,0]

{
ℓ(φ(s))

}
+c

= inf
u∈U[t,0]

sup
s∈[t,0]

{
ℓ(φ(s)) + c

}
.

This means for a given system, at any pair (x, t), adding a
constant value to the terminal cost ℓ(x), the resulting value
function will also be added with the same constant. However,
this is generally not true for the CLVF.
Proposition 2. For a given system and fixed terminal cost
ℓ(x), CLVFs with different γ’s have the same zero-level set.

Proof. It suffices to prove the following: if Vγ1(x, t) = 0,
then ∀γ ≥ 0, Vγ(x, t) = 0. It is clear that eγ(s−t) ≥ 0
holds for all γ ≥ 0 and s ∈ [t, 0]. If Vγ1

(x, t) = 0, there
exist some u(·) such that sups∈[t,0] e

γ1(s−t)ℓ(x) = 0. For a
different γ2 > 0, follow the same control signal u(·), we have
sups∈[t,0] e

γ2(s−t)ℓ(x) = 0, which proves the proposition.

Algorithm 1: Obtaining the CLVF for general non-
linear systems

1 Input: System model, input bounds, desired
exponential rate γ > 0.

2 Output: CLVF V∞
γ (x).

3 Find the smallest control invariant set: set
ℓ1(x) = ||x||2 and γ1 = 0, use (8) to get V∞(x)

4 Compute the CLVF: a← minx V
∞(x), set

ℓ2(x) = ||x||2 − a, use (8) to get V∞
γ (x).

The procedure for computing CLVFs is shown in Algo-
rithm 1. Line 3 computes a classic HJ value function with
γ = 0. If this value function exists, the level set of its
minimum value is I∞m of this system given input bounds.
Line 4 re-initializes the computation to compute the CLVF.
By remark 2, if in Line 4 we again set γ = 0, the zero level
set of the resulting function will be I∞m . By Proposition 2,
the zero level set of CLVF with a positive γ will be I∞m .
This means the CLVF is positive outside I∞m , and has zero
value ∀x ∈ I∞m .
D. Infinite-Time CLVF and Exponential stabilizability

Here we establish the relationship between the exponential
stabilizability to I∞m and the convergence of the CLVF. We
show that the CLVF will converge locally (globally) if and
only if I∞m is locally (globally) exponentially stabilizable.
The following proposition will help us establish the result.
Proposition 3. At any point (differentiable or non-
differentiable) in the domain Dγ of the CLVF, there exists
some control u ∈ U such that

V̇∞
γ ≤ −γV∞

γ . (34)

Proof. The CLVF-VI (22) guarantees that the above in-
equality holds at every point where V∞

γ (x) is differentiable.



However, by theorem 2, the value function is only Lipschitz
continuous, which means there exist points that are not differ-
entiable. For those points, [15] showed that either a super-
differential (D+V∞

γ (x)) or a sub-differential (D−V∞
γ (x))

exists, whose elements are called super-gradients and sub-
gradients respectively. A function is differentiable at x
if D−V∞

γ (x) = D+V∞
γ (x). Non-differentiable points

only have a super-differential or sub-differential. At non-
differentiable points, V̇∞

γ (x) = p · f(x, u), where p is either
a sub-gradient or a super-gradient.

Considering a non-differentiable point with a super-
differential, the corresponding solution is called a sub-
solution, which satisfies

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

p+ · f(x, u) + γV∞
γ (x)

}
≤ 0

∀p+ ∈ D+V∞
γ (x).

In this case, the maximum of the two terms is less or equal
to 0, which implies both terms must be less or equal to 0.
We have

∀p+ ∈ D+V∞
γ (x) , inf

u∈U
p+ · f(x, u) ≤ −γV∞

γ (x),

which means any super-gradients will provide a decrease
of the value along the trajectory. When there exists sub-
differential, we have:

max

{
ℓ(x)− V∞

γ (x), inf
u∈U

p− · f(x, u) + γV∞
γ (x)

}
≥ 0.

∀p− ∈ D−V∞
γ (x).

In this case the largest decrease we can have is

∀p− ∈ D−V∞
γ (x) , inf

u∈U
p− · f(x, u) = −γV∞

γ (x),

which is proved to be true in [16]. Combining all the
cases discussed above, we get the desired inequality: V̇∞

γ ≤
−γV∞

γ holds for all points in Dγ .
Theorem 3. The system can be exponentially stabilized to its
smallest control invariant set Im from Dγ \Im (or Rn \Im),
if and only if the CLVF exists in Dγ (or Rn).
Proof. (←) Assume the limit in (7) exists in Dγ . For any
initial state x0 ∈ Dγ \ Im, consider the optimal trajectory
φ(s) = φ(s;x, u∗, t) ∀s ∈ [t, 0]. From Proposition 3:

DxV
∞
γ (x) · f(x, u∗) = V̇∞

γ ≤ −γV∞
γ . (35)

Using the comparison principle, we have ∀s ∈ [t, 0],
V∞
γ

(
φ(s)

)
≥ e−γ(s−0)V∞

γ

(
φ(0)

)
. (36)

Applying the definition of TV-CLVF,
Vγ

(
φ(0), 0

)
= ℓ

(
φ(0)

)
= ||φ(0)|| − a.

Combining the fact that Vγ(x, t) ≤ V∞
γ (x), we have:

||φ(0)|| = Vγ
(
φ(0), 0

)
+ a ≤ V∞

γ

(
φ(0)

)
+ a.

Applying (36) gives us
||φ(0)|| ≤ V∞

γ

(
φ(0)

)
+ a ≤ eγsV∞

γ

(
φ(s)

)
+ a

=
e−γ(0−s)V∞

γ

(
φ(s)

)
||φ(s)||

||φ(s)||+ a.

This inequality holds for all s ∈ [t, 0], so it holds for s = t:

||φ(0)|| ≤
e−γ(0−t)V∞

γ

(
φ(t)

)
||φ(t)||

||φ(t)||+ a

= e−γ(0−t)k||φ(t)||+ a

where k =
V ∞
γ (φ(t))

||φ(t)|| . Since the limit in (7) exists, we know
that V∞

γ (φ(t)) is finite. Additionally, ||φ(t)|| is the distance
to the origin of the initial state, which is also finite. This
inequality holds for all φ(t) ∈ Dγ \ I∞m . Therefore, we
conclude that ∀φ(t) ∈ Dγ \ I∞m , there exist some constants
k and γ such that

||φ(0)|| ≤ e−γ(0−t)k||φ(t)||+ a.

In other words, the controlled system can be locally ex-
ponentially stabilized to Im. If the limit exists in Rn, we
conclude that the above result holds globally.

(→) Again, consider the optimal solution φ(s) =
φ(s;x, u∗, t) ∀s ∈ [t, 0]. Assume exist some constants k and
γ and a set Dγ such that ∀s ∈ [t, 0] and ∀φ(s) ∈ Dγ ,

||φ(s)|| − a ≤ k||φ(t)||e−γ(s−t). (37)

Then, plugging (37) into (6),

Vγ
(
x, t

)
= sup

s∈[t,0]
eγ(s−t)

(
||φ(s)|| − a

)
≤ sup

s∈[t,0]
eγ(s−t)(k||φ(t)||e−γ(s−t)) = k||φ(t)||.

As t→ −∞, Vγ(φ, t) monotonically increases by definition,
and is upper bounded by k||φ(t)||, we conclude that the
infinite-time CLVF exists in Dγ . If the above conditions hold
globally, the infinite-time CLVF exists globally.

Theorem 3 establishes the equivalence between the ex-
istence of CLVF and the exponential stabilizability of the
systems. It implies that the Dγ = DROES .

The main benefits of using CLVF are 1) each sub-level
set of CLVF is not only control invariant, but also attractive,
and the decay rate is exponential. 2) For systems with control
invariant sets, trajectories within Dγ can be stabilized to Im.
3) The CLVF can be constructed numerically, removing the
need for “guess and check” methods.

IV. FEASIBILITY GUARANTEED CLVF-QP
In this section, we specify one way of synthesizing the

optimal control for control affine systems using quadratic
programming. We emphasize that the proposed quadratic
program (QP) is guaranteed to be feasible ∀x ∈ Dγ . A
control affine system is of the form

ẋ(s) = f
(
x(s), u(s)

)
= g

(
x(s)

)
+ h

(
x(s)

)
u(s), (38)

where g : Rn → Rn, h : Rn → Rn×m. For such systems,
(34)is equivalent to the following linear inequality in u:

DxV
∞
γ (x) · g(x) + inf

u∈U
DxV

∞
γ (x) · h(x)u ≤ −γV∞

γ (x).

Similarly to the CLF-QP, we synthesize the optimal con-
troller based on a point-wise min-norm optimization problem
with one linear inequality constraint. If in addition, the input
bound U is polytopic, the optimization becomes a QP.
Theorem 4. (Feasibility Guaranteed CLVF-QP) Given
some reference control ur, the optimal controller can be
synthesized by the following CLVF-QP with guaranteed
feasibility ∀x ∈ Dγ .

min
u∈U

(u− ur)
T (u− ur)

s.t. DxV
∞
γ (x) · g(x) +DxV

∞
γ (x) · h(x)u ≤ −γV∞

γ (x)

Proof. This is a direct result from Proposition 3.



Fig. 2. Comparison of the CLVF (top-left) and the hand-crafted CLF (top-
right). The input constraint is u ∈ [−5, 5], with γ = 1. Bottom: comparison
of trajectories (left) and control signal (right) using back stepping (red) and
the CLVF-QP (blue). When using backstepping controller, the control is
unbounded, and there is no guarantee of the convergence rate.

Remark 3. Though the QP is feasible, the optimal controller
is not necessarily continuous in x. This comes from the non-
smooth nature of the CLVF.

V. NUMERICAL EXAMPLES
The following examples illustrate the main benefits of our

proposed method: feasibility guarantees, input bounds, and
applicability to systems with no equilibrium point. We also
study the effect γ on the ROES. All simulation results are
based on MATLAB and tool boxes [25], [26]. Note that
one challenge of the proposed method is how to numerically
characterize the region where the limit in (7) does not exist.
In the examples provided, we set a very large threshold
and treat those states with value larger than the threshold
as infinity, hence not in Dγ .
A. Effect of γ

Consider the system given by
ẋ1 = − sin(x1)− 0.5 sin(x1 − x2),

ẋ2 = −0.5 sin(x2)− 0.5 sin(x2 − x1) + u, (39)

where u ∈ [−0.5, 0.5]. It can be verified that (x, u) =
(0, 0) is an equilibrium point. We compute the CLVF for
different γs and provide the estimate (under-approximation)
of the corresponding ROESs. The CLVF-QP is used to
calculate the optimal trajectories with initial state x =
[−2.2, 2.1]. Results are shown in Fig. 1. Larger γ’s lead to
faster stabilization but a smaller ROES, allowing one to trade
off aggressiveness of the controller with the region that can
be stabilized.
B. Comparison with Back Stepping and Hand-Crafted CLF

Consider the following system
ẋ1 = −

3

2
x21 −

1

2
x31 − x2, ẋ2 = u.

One can find a global CLF (if no input constraints) using
back stepping: Vclf =

1
2x

2
1 +

1
2 (x2 +

3
2x

2
1)

2, and the corre-
sponding controller is: u(x) = 3x1(

3
2x

2
1+

1
2x

3
1+x2)+x1−

(x2 +
3
2x

2
1). Finding this CLF requires some expertise, and

may not be valid under input constraints. However, a CLVF
with input constraints can be directly computed as shown

Fig. 3. These plots shows how to use Algorithm 1 to find a positive semi-
definite CLVF, and shows the exponential decay rate of the value along the
trajectory. Top-left: using step 1 (Line 3), the projected CLVF is shown with
γ = 0. The minimum value is Vmin = 0.51. Top-right: using step 2 (Line
4), the projected CLVF is shown with γ = 0.3 and ℓ(x) = ||x||2 − 0.51.
In this example, we project the third dimension, and take it’s minimum
value, i.e. Vproj(x1, x2) = minx3 V (x1, x2, x3). Bottom-left: Using the
CLVF-QP, the trajectory starting from x0 = [2.5, 2.5] , converges to Im.
Bottom-right: Value of the CLVF along the trajectory.

in Fig. 2. Due to the non-smooth nature of the viscosity
solution, the corresponding feedback law is not necessarily
continuous.

C. Systems without an Equilibrium Point
Consider the following dubins car example

ẋ1 = v cos(x3), ẋ2 = v sin(x3), ẋ3 = u,

where v = 1 and u ∈ [−π, π]. This system cannot
be stabilized to a point and therefore does not admit an
equilibrium point, nor a CLF. However, our method can
identify and stabilize to the smallest region that the system
can stay within. The result is shown in Fig. 3, where for
visualization the projection through the union of x3 is shown.

VI. CONCLUSIONS
In this paper we proposed a method of finding a Lipschitz

continuous control Lyapunov-value function (CLVF) which
has properties similar to CLFs and can be computed numeri-
cally using dynamic programming. The proposed method can
be applied to general nonlinear control systems. For control-
affine systems, a feasibility guaranteed CLVF-QP is proposed
to synthesize optimal controllers online.

The CLVF approach has two particularly useful properties.
First, for systems with no equilibrium points, the proposed
method can stabilize the system to the smallest control
invariant set (if one exists) around a point of interest. Second,
given a desired stabilizability rate γ and control bounds, this
method can find the true ROESs. It should be noted that due
to numerical issue, the ROESs shown in this paper are under
approximation. One can change the parameter γ to trade off
the rate under which the system can be stabilized with the
region from which the system can be stabilized.

The main drawback to this method is the heavy compu-
tation requirement (i.e. “curse of dimensionality”) due to
dynamic programming. Future work to address this issue
includes decomposition of the system [17], using hand-tuned
CLF candidates to warm-start the computation [27], adaptive



grids [19], and data-driven approaches [18]. Other direc-
tions of interest include incorporating disturbances, exploring
systems with multiple isolated equilibrium points, finding
connections with black-box models, and tuning γ’s online to
achieve different stabilizability properties.
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